

SwitchOn Workshop – São Paulo/Brazil October 15th 2015

SDN Testbeds @ AmLight: One Year Later

Jeronimo A. Bezerra Florida International University <jab@amlight.net>

Describing AmLight

AmLight is a Distributed Academic Exchange Point

4 x 10G links and two topologies:

- SDN ring: Miami-Sao Paulo-Chile-Miami
 - 20 Gbps of total capacity
 - Full Openflow and network virtualization support
- MPLS ring: Miami-Brazil-Miami
 - 20 Gbps of total capacity
 - Layer 2 support

Soon to be added to the SDN ring:

- A new 10Gbps ring (capacity)
- A 100 Gbps alien wave between Sao Paulo and Miami:
 - Focused on experimentation

Total of 120Gbps to Internet2 through AMPATH IXP

Describing AmLight SDN

- Production SDN Infrastructure (since Aug 2014)
- Connects AMPATH and SouthernLight GLIF GOLES
- Carries Academic and Non-Academic traffic
 - L2VPN, IPv4, IPv6, Multicast
- Supports Network Virtualization/Slicing

SDN Stack

Northbound: Users' APIs

Southbound API: OpenFlow 1.0

Physical Layer

Programmability @ AmLight

Two possible interfaces to use AmLight:

- Openflow (1.0, 1.3 in the future)
 - Through dedicated slices
 - Real devices (Brocade MLXe)
 - Own VLAN range
 - Different virtual topologies available
 - Layer 2 and Layer 3 matches
 - Low level configuration
- NSI v2 Network Service Interface
 - High level abstraction for layer 2 multidomain provisioning
 - No need to know the topology and physical devices/configurations

Examples – ONOS SDN-IP @ ONS

Examples(2) – ONOS SDN-IP @ ONS

Examples (3) – And more...

- In partnership with RNP:
 - FIBRE (Future Internet testbeds / experimentation between BRazil and Europe): how to use an OpenFlow native backbone to interconnect FIBRE islands (or racks)?
 - FIBRE island installed at AMPATH/Miami and using AmLight
- In partnership with Internet2:
 - Internet2 Technology Exchange 2014 Multi Domain controller managing slices from different SDN domains (Internet2, AmLight, Univ. of Utah and MAX)
 - Internet2 Global Summit ONOS SDN-IP demonstration
- In partnership with University of Twente:
 - "Assessing the Quality of Flow Measurements from OpenFlow Devices"
 - Authors: Luuk Hendriks, Ricardo de O. Schmidt, Ramin Sadre, Jeronimo A.
 Bezerra, and Aiko Pras
- All of them running on the same <u>production</u> infrastructure

Open Points

Challenges for the near future at AmLight:

- Troubleshooting
 - Flow consistence among layers
 - OpenFlow sniffer
- Quality of Service
 - Bandwidth Guarantee in an Openflow/SDN
 - Dynamic application load-balance
- Security
 - Secure access with network virtualization
 - Isolation between applications
 - Testbed Sanitizer
- Networking
 - Scalability
 - IP/IPv6/Multicast Routing
 - Inter-SDN domain forwarding (SDX)

What next?

- Do you want to have your own testbed?
- 1. Send an e-mail to sdn@amlight.net explaining your project
- 2. Your application will be tested in our Mininet environment
 - Tested for security, not functionality
- 3. Then, your application will be tested in our physical environment
 - Also for security
 - ... to understand how devices handle your application
- 4. Once it is ok, your application will added to our production environment
 - Joint operation
 - Any new code change will restart the process

SwitchOn Workshop – São Paulo/Brazil October 15th 2015

Do you want to know more? www.sdn.amlight.net

Jeronimo A. Bezerra Florida International University <jab@amlight.net>

